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Description of dynamic x-ray scattering from freely standing smecticA films
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The consequent description of the x-ray scattering from the free standing swditits is suggested.
Calculations are based on the discrete model for the film dynamics. The scattering intensity temporal autocor-
relation functior(1(t)1(0)) is obtained within the framework of this approach neglecting the multiple scatter-
ing and refraction effects. It is shown that the behavior of this function crucially depends on the film thickness.
In particular, in thin films containing less than®layers the time dependence @f(t)1(0)) has damping
oscillation character. This behavior is determined by an acoustic mode that describes the film motion caused by
the action of the surface tension. For thick films containing more thataj@rs the dynamics of the intensity
temporal autocorrelation function is determined either by an acoustic mode or by a wide spectrum of modes
depending on the x-ray geometry. In both the cases the autocorrelation function is a relaxation one. The results
obtained are compared with the experiments on the coherent soft and hard x-ray scattering.
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I. INTRODUCTION We show that the experimental results on the coherent soft
and hard x-ray scattering from Sifilms may be described

The layer displacements and the correlation functions in &y the simple analytical expressions both for thin and thick
freely standing smectié-(Sm-A) films are intensively stud- films.
ied both experimentally and theoretically—12). The basic The paper is organized as follows. In Sec. Il we present
experimental methods of studying the structure and the thethe general relations for the scattering intensity temporal au-
mal fluctuations in these systems are the analysis of th&ocorrelation function. Section Il is devoted to the analysis
specular and the diffusion x-ray scattering ddt#—6,8,11. of the obtained results on coherent soft and hard x-ray scat-
The static properties of SmA- films have been studied in tering taking into account the experiment geometries. In con-
detail[1,4,5]. In recent works the attention is paid mostly to clusion, possible experimental facilities are discussed.
dynamic properties. A major progress was obtained in the
experiments on the coherent soft and hard x-ray scattering
from the freely standing Sré films [6,8,11]. In these stud- Il. BASIC EQUATIONS
ies the scattering intensity temporal autocorrelation function _ o ) )
(1(t)1(0)) has been measured. The experiments were per- In the f|rst Born_approxmatlon the intensity temp_oral au-
formed in the vicinity of the first Bragg peak. It was found tocorrelation functior(i(t)1(0)) of the x-ray scattering is
that in thick films[6,8] with N~ 10%, whereN is the number proportional to the square qf the Fo_urler—transform of the
of smectic layers, the autocorrelation functigirft)l(0)) is ~ €lectron density autocorrelation function
described by a model with a single relaxation time associated
with the film motion as a whole provided by the surface
tension. In Ref[11] the dynamic correlation function for thin (1(DH1(0))~[S(H)[2, 2.
films with N~ 107 was studied and the damping oscillations
have been found. Its behavior can be described by a simple
relation where

(1(t)1(0))=A+B coswt exp(—t/7),
S(t)=(p(a,)p(—q,0)). (2.2

where the frequencw and the relaxation time are fitting
parameters. The analysis performed in R&1] showed that
the order of the magnitude of these parameters are the sarhtere p(q,t) is the electron density Fourier transform and
as those describing the film motion as a whole under the=(q, ,q,) is the scattering vector. Due to the layered struc-
action of the surface tension. ture in the SmA films the electron density has a one-

The question arises of the consistent description of thelimensional periodicity. We introduce the Cartesian coordi-
correlation functiorXI(t)1(0)) based on the SrA film dy-  nate frame with thez axis directed normally to the film
namics equations. In this work we present calculations okurface. In the equilibrium the smectic layers are equidistant
(I(t)1(0)) in the framework of a discrete model. The solu- planes separated by the distanitelhe first layer coincides
tion of the problem is based on the frequency spectrum andith the xy plane, and the film is located in the regian
the dynamic displacement-displacement correlation func=0. In the N-layer SmA film the electron density can be
tions, which had been obtained in the previous st{tB). expressed as
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N N
p(ri !th):psngl pM[Z_nd_un(rL !t)] S(qL anat):Pgn;:l f er exq_iqL'rL)
N
=ps >, f dzpm(21) 8(z;—z+nd+uy(r b)), XflePM(Zl)fdzzpm(Zz)xde' exp
n=1
(2.3

(—iqzz’)f dz’ exp(iq,z")6(z' —z;—nd
wherepy is the surface molecular density in a laye(r, ,t)

is the nth layer displacement from the equilibrium position —up(r, ,1))8(2"—z,—md—u,(0,0). (2.9
along thez axis, andp), is the linear electron density in
molecule.

Substituting Eq(2.3) into Eq.(2.2) we get the correlation After integration of thes functions we have
function S(q, ,q,,t) in the form

N
st an0=p2 X [ dry exii—ia, 1) [ dzpu(z) [ dzpuzaent —igufz -2+ (i md-uyr, 0

—Un(0,0}1). (2.5

Supposing the displacement fluctuations are Gaussian ardereA is the linear size of the film]y(x) is the zeroth-order
integrating overz, andz, we get[6] Bessel functiony | is the distance from the axis. The de-
pendence of the correlation functi@{t) on time is deter-
. mined by theG,(q, ,q,,t) function.
S(a, .05, 1) =p2lpm(a)|? > exd —ig,(n—m)d] The dynamic displacement-displacement correlation func-
n,m=1 . . .
tion may be presented in the following forf@,12]:

N

X | drexp(—iq-r 1o
f L eXp(=ig-r,) <Un(l’i,t)um(0,0)>zﬁf2 /AquQL‘]O(quL)

2
XeXF{ - %([Un(u ,t)_um(O,O)]2> . X<un(qi ,t)Um(—ql,O)), (29)

(2.6) wherea is the molecular transverse size.
Formally Egs.(2.7)—(2.9) describe the intensity-intensity

Since the SmA film is isotropic in the layers plane we temporal correlation function. It depends on the layer
can perform the integration over the angle betweerand displacement—Ilayer displacement correlation functions. To
q, . Therefore the correlation function can be written as obtain these functions we start from the well-known expres-

sion for the free energy of the free standing &iim
N

. 1 au\?
S(q. ,qz,t)=27Tp§|pM(qZ)|2 2 exf —igq,(n—m)d] F= —f dr[B(— +K(ALU)2
nm=1 2 0z
2
_ qz 2 Y 2 2
X ex ?[<un(0,0)) t5 dr (|V ug*+ |V uyl?), (2.10
5 where B and K are the layer compression and layer bend
+(Un(0,0)]1]Gnm(q. ,9z,1), 2.7 elastic constantsy is the surface tension. This expression
consists of the bulk and the surface contributions. Describing
where the x-ray scattering it is convenient to use a discrete model

for the free energy2,6,129
Gnm(Qy ,dz,t) 1 gN-1 N
F= —f drij = 2 (Upsy—up)?+dKX (A up)?
2 d n=1 n=1

A
:fo rLerJO(QJL)eXFIQgUn(U ,Hum(0,0))].

(2.8 + ')/[(VLul)ZJ’_(VLuN)Z]J' (2.11
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The motion of each smectic layer depends on the elastic, N

—d~Y(8F/bu,), and viscouszsA, (du,/dt), forces. Here Fextz—f driz un(r, O f(r ,1). (2.13
73 IS layer sliding viscosity. The set of equations of motion n=1

of smectic layers for free standing film i, g, presentation

has the forn{6,12] In this case the set of equations of motithl12 becomes

nonhomogeneous with the solution

. B y B
(pw2+lwn3qf— 7 Kal- a(ﬁ)uﬁ FU2=0, u=#f,
_ ) B . B B wherey is the susceptibility matrix, and
(pw2+lw7]3ql_2?_qu un"‘?un—l"—?un%—l
Uz fi
=0, n=23,..N—-1, (2.12 U, f,

u= : s f:

B
UN+ ?UN,lZO. Un fN

: B 4
(pw2+lw773(ﬁ— 2 Kq}— aOIf
: . L The spectral densities of the layer displacements correla-
Note that to describe the film dynamics in the case Ok, fynctions can be found by using the fluctuation-
solid supported films we had to replace the last equation "aissipation theorem
the set(2.12 by a flat boundary condition ’

u :0 . |kBT * dw B
N <Un(ch !t)um(_quo)>_ 24 J ocT[an(QL 1(1))
For the calculation of the layer displacement-layer dis- A
placement temporal correlation functions we can include into —Xnm(QL,@)]e ' (2,14
the free energy the terri,,;, connected with the external
forces. This term has the form where the elements of the susceptibility matrix pt&]

d[Up_ 1)+ (1= a)Up_2(X) [[Uny_n(X)+ (1= a)Un_p-1(X)]

B Un(X) +2(1= @)Uy -1 (X) + (1= @) *Uy-o(X)

: (2.19

Xnm= Xmn=(— 1)n+m+l

for @
[X+ 1- a]UN_l(X) - a( 1- _) UN—Z(X):O' (218)
2
mn=12,...N; n=m.
For the case of a solid supported films the equations of
Here U, (x) are the Chebyshev polynomials of the secondmotion have the form

kind, [13,14], the « andx values are given by relations

, A,u=0, (2.19
_d')"h h
a=—pg—, where
u;
d? 2 2 2 u
X:_l"'E(Pw +iwnsql —Kqp). (2.19 u= ;2 ,
. . . UN-1
The roots of denominator in Eq2.15 determine the
eigenfrequencies of the free standing @nfiim, (2x+1-—a) 1 O
1 2x 1 -~ 0 0 O
7397 Kq!
(= (M
S e e
2 4\ 12 Al_ . . . . .
730,
- ) =12 ...N, (2.1 0 o 0 - 2x 1
P 0 0 1 2 1
wherex(") are the roots of the characteristic equatji®g] 0 0 0 -+ 0 1
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FIG. 1. Dependencies of the real pésblid line) and absolute
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IlI. ANALYSIS OF X-RAY SCATTERING

We apply the obtained results for the description of ex-
periments on the coherent x-ray scattering from freely stand-
ing SmA films [6,8,11. Performing the integration in Eq.
(2.14 we can obtain the temporal correlation function of
layer displacements in the forfi2]

(un(a, ,HHupm(—a,,0))

N

S kT

=1 }\(l)(ch)

oV exp—iw!'t)— o exp(—int)
X

00—l

v (a)v(a,)

, (3D

value of the imaginary paitdotted line of eigenfrequency on the Wherekg is the Boltzmann constanT, is the temperature,
wave number for the acoustical mode for free standing four-layemnd the valuex(’(q, ) is given by the relatiofi12]

Sm-A film. The dimensionless frequeney= wd+/p/B and dimen-
sionless wave numbe&r=q, ydy/B are used.

The existence of a nonzero solution of .19 results
in the characteristic equation

Un-1(X) + (1= a)Un_p(x)=0. (2.20

For each root of this equation the characteristic frequencies
can be obtained from Ed2.17). The sufficient difference

2B
)\('>(qL)=F(l+x('))+quf. (3.2

The components of the normalized eigenveatdl(q, )
corresponding to th&th eigenvibration are

UEP(QL)

s :
\ 2 [up(a)r?

v (qy)= 3.3

between the dynamics of freely standing and solid supported

films is in the existence of low frequency acoustic mode with

w~(, in the freely standing films for smat|, . All eigen-

u(q)=(—1)"" U, 1(x)+ (1= a)U,_o(x")].
(3.4

modes of the solid supported films are optical. Figures 1 and

2 show the dependencies of eigenfrequencieg oim forth
layer film for both cases.

0 002 004 006 008 01 012 014

q

FIG. 2. Dependencies of the real pafs®lid and dashed lings
and absolute values of the imaginary pddstted ling of eigenfre-

Heren and| are the layer and mode numbers, respectively.
Note, that fort=0 Eq.(3.1) describes the static correlation
function

vW(a)el(q,),
(3.5

which is written as a series of eigenmodes. This static corre-
lation function agrees with those obtained previously in Refs.
[2,5]. This function was analyzed in detail in Ref&,5] for
free standing films and in Rdf15] for solid supported films.
Usually the measurements are performed in the vicinity of
the first Bragg peak witly,=2#/d. Theq, values are de-
pendent on the experiment geometry and typigal are
within the limits 1¢—10* cm™! [6,8,11]. It is essential that
for these values of the scattering vector the expression for
(I(t)1(0)) can be simplified significantly. The film size is of
the order ofA~1 cm.
For the typical SmA parameters the exponent in £g.8)
is sufficiently small even at=0. Thus forg,~10" cm !

N
B kgT
<un(ch)um(_q¢)>_|§1 )\(I)(QL)

quencies on the wave number for the optical modes. Solid lineénd (U (0,0)un(0,0))~20 A, [2], the exponent in Eq(2.8)

correspond to free standing four-layer Sifilm and dashed lines

is of the order of 0.2, and it decreases rapidly when the time

correspond to the solid supported one. The dimensionless frequenéyn the correlation function increases. Therefore, we expand

o and dimensionless wave numlzgare defined in caption to Fig.

1.

the exponential in Eq2.8) in the Taylor series and account
for two first terms only

021706-4
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exf aZ(un(r, ,HuR(0,00)1~1+02(Un(r, ,H)uy(0,0)).
(3.6

Taking into account Eq(3.6) we present the function
G,m(9,,9, ,t) as a sum of two terms

The time-dependent second te 1,T)1(qz,ql ,t) has the form

A
Gir(a,,q, ,H)=02 fo dr.r; Jo(gur, ){Un(r, ,t)un(0,0)).

Using Eq.(2.9 we get
2

q
Giana =5 |

27la
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G020, 1) =Gio4(d,,a,) + Gir(a,,a, ,b).

The integral over , is the Lommel integral. It is equal {d.3,14]

(3.7
, A
AdQLQKUn(QL D Um(—0q,,00) X fo dryr; Jo(a.r,)Jdo(arr,). (3.8
Jo(q) A)J A)—q'J A)J(q) A
AqL o(aLA) 1(‘hq2)_§,i2 o(d,A)Ja(q A) for Cﬁ—q12¢0
P 3.9

A
Jl) drir Jo(diri)do(q;r,)= A2

— (350, A)+35(q,A)]

for q, =q;

This expression is the continuous function of the differenceSince the displacement-displacement correlation function be-

q, —q, . Therefore we get

2
q A (2wla , , ,
G|(’1]r-‘|?‘|(qZ1qL 1t): 2271_ JZ /Adqlf(ql qu 1A)qL2
X(un(q; ,Hhum(—q,0)), (3.10
where
f(al.q.,A)

_ a4, Jo(a; A)J1(a, A)—ql Jo(a A)Js(alA)
q;(a?—q}?) '

(3.11

3
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FIG. 3. Dependence of the functidgq, ,q, ,A) defined by Eq.
(3.11) on the wave numbeq| for A=1cm andq, =10° cm™?,

haves as ,? for smallq/ , the product

9 %(un(a) ,Hun(—a;,0)

is the regular function off| . At the same timéd(q| ,q, ,A)

is a rapidly oscillating function ofj| variable, and it has a
sharp peak atj, =q| . Figure 3 shows the behavior of the
functionf(q] ,q, ,A).

Note that the upper integrating limit in E3.10 may be
extended to infinity while the low limitg,,=2#/A, is in-
troduced due to the Landau-Peierls instability that leads to
the logarithmic divergence of the integral with the increasing
of the film size. So Eq(3.10 contains two contributions.
The first of them is formed in the vicinity of the function
f(q) ,q9.,A) peak, and the second one results from the
lower integration limit. In what follows the second input will
be omitted since it is noticeably less than the peak contribu-
tion. In the intermediate region the functidifq; ,q, ,A)
oscillates rapidly and has a small amplitude. As long as the
function

qi2<un(qi ,t)Um(_Qi,o»
is smooth, it may be carried out from the integral in Eq.
(3.10 in the pointg; =q, . Accordingly we have

2.2
qzq7A
Gian(Gz, A ) =(Un(a O Un(— 0. 0) 5

2mla
><f f(q!,q,,A)dg. . (3.12
2ml A

oy
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FIG. 4. Calculated time dependence of the scattering intensity 1.1] )
autocorrelation function for 100-layer-thick filmgy, =10° cm™2. o)
The inset shows the experimental results for 95-layer-thick film E
from [11]. Units are the same in the inset and in the environment. ':ﬁ_ ]
The time-dependent correlation function g
(Un(a, ,Hum(—0.,0))
11 ; .
can be calculated with the aid of E(B.1), which contains 0.1 1 1o 100
summation over all modes. For the typical valuesqof t (us)

~10°-10* cm™ %, the summation may be simplified. Actu-

ally, the amplitudes of various mode fluctuatiokg,T/x (",

wherel=1,... N, are significantly different. In order to

FIG. 5. Calculated time dependence of the scattering intensity
autocorrelation function fog, = 10° cm ™2, for the films of various
thickness:(a) N=6, (b) N=1000.

illustrate this we consider the relation between fluctuation

amplitudes of théth and the first mode. Using E(.2) we
can write

keT/ND ND 14+xP+Kd?g?/(2B)  1+xP
keT/AD AT~ 1+xD+Kd%q, 7(2B)  1+x7”
(3.13
where[12]
o
MH=_14+—
X 1 N’ (3.19
(I-1)7 2« (I=21)m
= _ ol "
X cos— +Ncos2 T
In particular, forl=2 andqg, =10° cm™ ! we get
AD  aN  dyg®N
= ~2NX10& (3.15

N2 T 2227 2BA?

For the modes with>2 the ratio(3.13 is even less.

As it follows from Egs.(3.2) and(3.13—(3.15 the mode
with 1=1 has the largest amplitude and either the smallest
characteristic frequency or the largest relaxation time. There- D=+
fore, in Eq.(3.1), we may take into account the first mode
only for not too thick films. This is an acoustic mode that

numbersn andm. Thus the values(t), which according to
Eqg. (2.1 determines the intensity autocorrelation function
(I(t)1(0)), has the form

A
f riJo(q.ry)dr

0

S(t)=C(a,)

keTAQ? o exp—ioMt)— 'Y exp—i0™t)
+

4y 0P -0V

2mla
xL GRS ,A)dqi} (3.16

l

where

N
C<qz>=27p§|pm<qz)|2n2

exd —ig,(n—m)d]

2
xexp( — %[(uﬁ(0,0)H(uﬁ,(0,0))]). (3.17

And the frequencies'?) are equal to

ZYQf_(“s(ﬁ 2
pdN 2p

12 2
/ECN

2p

(3.18

+ -

describes the synchronous motion of all smectic layers when The value

the interlayer distances are constant. In this case the correla-
tion functions(u,(q, ,t)un(—q,,0)) are equal for any layer

q™=\(8yp/ 75dN)

021706-6
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separates the regions of oscillating and relaxation motionmodes indicate that the possibility to restrict our consider-
for the acoustic mode. For the valge ~10° cm ! in thin  ation to an acoustic mode is justified only for being not
films with N<(87yp)/(73dg?)~800 the intensity temporal too large,

autocorrelation function in x-ray scattering experiments has

to be oscillating whereas in thick films its behavior has to be y \¥? 10
relaxational. QL<(m) N\/_N

In particular this estimate shows that taking into account the

Figures 4 and 5 shows the correlation funct{o(t)!(0)) acoustic mode only is valid for thin films. In this relation it is
for films of various thickness. Calculations have been perinteresting to investigate the x-ray scattering from thin films
formed according to Eq$2.1) and(3.16). Note that the first with N~10—20 where according to our calculations, the au-
term in Eq.(3.16, for, Jo(q,r,)dr, , is very sensitive to tocorrelation function(1(t)I(0)) should have an oscillating
the value ofAq, contrary to the second term in E®.16.  character with large amplitudes.
Since in the x-ray experiments the sum of the waves in the At the same time for thick films this approach is valid for
intervalq, min<0, <0, maxiS recorded this term may be used rather smallq, . If g, ~10°~1C° cm™ the contribution of
as a fitting parameter in the experimental data processinghe remaining modes is essential. In this case one may expect
The second term in Eq3.16 describing the temporal de- that for such films the decay of the dynamic correlation func-
pendence does not contain any fitting parameters. In Fig. #ion should be described by the wide relaxation spectrum.
the fitting parameter is chosen to make consistent the nu- The rather simple description of the dynamic x-ray scat-
merical results with the experimental data for the 95-layeitering is based on the expansi@6). It is valid for not too
film [11]. Figure %b) shows the correlation function in the large g,,q,~ 10" cm™ 1. If g, considerably exceeds this
thick film. This function is a relaxation one and is consistentvalue, the expansiof8.6) may be used for the times at which
with the experimental resul{$,8]. the correlation functioqu,(r, ,t)u,(0,0)) is noticeably de-

The essential role of the acoustic mode for the coherentreased. The initial behavior of the functi¢i(t)l(0)) may
X-ray scattering description was established. The estimatd®e numerically calculated by the general E(&1), (2.6)—
(3.13 and (3.15 for the ratio of amplitudes of various (2.9), and(3.1).

cm L.

IV. DISCUSSION
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